Superstability of Generalized Higher Derivations
نویسندگان
چکیده
منابع مشابه
Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (ii)
In this paper, we introduce and discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module.
متن کاملSuperstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)
We discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module. Let A be a Banach algebra and X a Banach A-module, f : X → X and g : A → A. The mappings Δ1 f,g , Δ2 f,g , Δ3 f,g , and Δ4 f,g are defined and it is proved that if ‖Δ1 f,g x, y, z,w ‖ resp., ‖Δ3 f,g x, y, z,w, α, β ‖ is dominated by φ x, y, z,w , then f is a generalized re...
متن کاملSuperstability of Generalized Multiplicative Functionals
LetX be a set with a binary operation ◦ such that, for each x, y, z ∈ X, either x ◦y ◦z x ◦z ◦y, or z◦ x◦y x◦ z◦y . We show the superstability of the functional equation g x◦y g x g y . More explicitly, if ε ≥ 0 and f : X → C satisfies |f x ◦ y − f x f y | ≤ ε for each x, y ∈ X, then f x ◦ y f x f y for all x, y ∈ X, or |f x | ≤ 1 √1 4ε /2 for all x ∈ X. In the latter case, the constant 1 √ 1 4...
متن کاملSuperstability of Multipliers and Ring Derivations on Banach Algebras
In this paper, we will consider Hyers–Ulam–Rassias stability of multipliers and ring derivations between Banach algebras. As a corollary, we will prove superstability of ring derivations and multipliers. That is, approximate multipliers and approximate ring derivations are exact multipliers and ring derivations.
متن کاملLocal higher derivations on C*-algebras are higher derivations
Let $mathfrak{A}$ be a Banach algebra. We say that a sequence ${D_n}_{n=0}^infty$ of continuous operators form $mathfrak{A}$ into $mathfrak{A}$ is a textit{local higher derivation} if to each $ainmathfrak{A}$ there corresponds a continuous higher derivation ${d_{a,n}}_{n=0}^infty$ such that $D_n(a)=d_{a,n}(a)$ for each non-negative integer $n$. We show that if $mathfrak{A}$ is a $C^*$-algebra t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2011
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2011/239849